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Incorporate Hypre/PETSc as an inner solver option

Ash cluster, Center for High Performance Computing, U. of Utah



Linear Solver Packages: Hypre and PETSc

• Both PETSc (ANL) and Hypre (LLNL) are 
fairly mature with active development

• Large user bases
• Many examples of good scaling up to 

large numbers of cores for sparse linear 
systems

• Both are C/C++ based codes with Fortran 
interfaces

• Roadmaps for heterogenous architecture  
(GPU, OpenMP, …) 



•Non-disruptive implementation with tech transfer

•Verified implementations of the third-party linear solvers

•Demonstrate parallel scaling on local resources (up to 7K cores) 

•Demonstrate algorithmic scaling (robustness) 

Major Objectives
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• Experience with HYPRE in an 
in-house LES code.

• Symmetric Pressure Poisson 
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Computational Implementation

Non-disruptive interface to the linear solver options 
Useable

Development Principles

• PETSc and Hypre are easy to build!

• Linking 3p packages handled with modification of environment variables during configure 

• Leverage the existing modules for input file parameters (Bools, Ints, Floats, etc)

• New Fortran modules hold the 3p solver interface

• Logic in solve_lin_eq.f direct the algorithm to the selected solver (eqn dependent) 



Code Example

See: https://bitbucket.org/jthornock/mfix_hypre_integration for code and wiki documentation. 
Email J. Thornock for access. 

solve_lin_eq.f



Code Correctness

• Several cases have been tested to demonstrate correctness by comparing against 
known data or comparing to solution with the native MFiX solver. 

• Tests have been performed on single and multiple cores 

Single Core Multi-core

Lid driven cavity problem with momentum and pressure solves



Code Correctness

• Comparison of the pressure coefficient (Cp) results 
using left-side Block Jacobi preconditioning against 
experimental data

• Overall, higher-order discretization schemes compare 
better with experimental data compared to the lower 
order scheme (FOUP)

• There was little to no difference in results for all 
preconditioning methods that were tested for the 
coarse mesh and the intermediate mesh
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3P Overhead - Hypre

Single Core

• 2-d heat transfer 
problem

• Work measured as total 
number of cells

• Ideal lines are just 
multiples of two from 
the left or right-most 
points

Non-ideal
Deviation



Equation Construction 
solve_lin_eq.f

Utilize hyperUtilities.f

Translate MFIX 
storage to HYPRE  

objects - remapping of 
index space (Matrix 

Setup)

Setup of HYPRE 
solver and 

preconditioner 
objects (Solver 

Setup)

Solve Ax = B (Solve)

Translate HYPRE 
objects back to MFIX 

storage - inverse 
index space mapping 
and memory cleanup = expense concerns

Solver Performance: Setup



MATRIX SOLVER

SOLVE

• Blue shaded regions exhibit non-ideal 
behavior

• Solver setup costs are particularly 
problematic

• Problem persists for multicores 



Total times

Strong Scaling
Matrix

Solver

Solve

• Setup the solver less frequently? Effect on overall 
convergence? 

• Do all solvers have a large setup cost? 
• More work/Core! 

Exploratory Questions/Observation



Comparison with MFiX

• Attempts at an apples-to-apple comparison for several test problems
• Varies problem to problem
• Work/core must be large enough for Hypre to be competitive 
• Lots of knobs - only just a few have been explored up until now 



Differencing Scheme
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• Left and Right preconditioning 
agrees well with the data. 

• Finer mesh resolutions highlight 
the difference between the 
solvers

Comparison with MFiX 
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• Efficiency of the linear solver is 
also highlighted. 
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Solution Efficiency

• Using flow-over-a-cylinder problem - exploring the stiffness of the linear system using various 
convection schemes. 

• Changing intermediate parameters (wide space) 
• Efficiencies are gained by tuning several adjustable solver parameters (tolerance, tolerances, 

multigrid parameters, etc)



3D Fluidized Bed – Polypropylene

fluidization jet

9 cm 2 cm 9 cm

100 cm

fluidization

Case 4: Fluidized Bed with Polypropylene Particles (3-Dimensional)

Case
Dimensions +

Mesh
Time Step Tolerance Uin Solver Scheme P.C.

4.1
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3 5 m/s BCGS van Leer
1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

4.2
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-1

Min: 10-6

Outer: 10-1

Solver: 10-3 20 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

4.3
20x100x2 cm3

40x250x10

DT: 10-3

Max: 10-4

Min: 10-6

Outer: 10-1

Solver: 10-1 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

Case 5: Fluidized Bed with Polypropylene Particles (2-Dimensional)

Case
Dimensions +

Mesh
Time Step Tolerance Uin Solver Scheme P.C.

5.1
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-1

Solver: 10-1 5 m/s BCGS van Leer
1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

5.2
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-1

Solver: 10-3 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)

5.3
20x100 cm2

56x250

DT: 10-3

Max: 10-3

Min: 10-6

Outer: 10-3

Solver: 10-3 5 m/s BCGS van Leer

1. MFiX Line
2. PETSc BJACOBI (left)
3. PETSc BJACOBI (right)



Fluidized Bed
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Example: FluidBed1

Increased resolution of original input file by a factor of four. 

1st attempt with native MFiX solve: diverged. :-(

2nd attempt with gmres/smg: converged.       :-)

Native MFiX
Hypre



Summary 

• Several test problems have been explored and tested for correctness (passed), both multicore 
and single core. 

• Performance has been fairly well characterized on a series of single phase problems, 
highlighting the overhead costs of Hyper. 

• Comparisons with MFiX are favorable, but may depend on the scenario and require solver 
parameter tuning, of which there are a few in Hypre, especially the multigrid parameters. 

• Some cases better algorithmic scaling when compared to the use of the native MFiX solver. 



Future Work

• Include more complexity in the problems we are exploring (spouted beds for CLC, etc.) 

• Scale-up the problems to larger core counts

• Look for ways to amortize setup costs

• Other efficiency gains? OpenMP? 

• Discussion with MFiX team: What problems would they like to see? 


